Nimrod/EnFuzion

Colin Enticott Slavisa Garic Tom Peachey

Monash University

Today's time table

9:30 – 11:00 Introduction to Cluster Computing

- eScience
- History of Nimrod/EnFuzion
- Clusters
- Parameter sweeps
- EnFuzion Demonstration of EnFuzion running under Windows
- 11:30 1:00 Grid Computing
- 2:00 3:00 Distributed Optimization
- 3:30 4:30 eScience Projects

The Nimrod team

http://www.csse.monash.edu.au/nimrod

Project head	David Abramson		
Nimrod/G core technology	Slavisa Garic		
Scheduler & APST Interface	Shahaan Ayyub		
Portal and Web Services	Colin Enticott		
Active Sheets	Paul Roe, Gavin Cheuk & Slavisa Garic		
Applications	Colin Enticott and Tom Peachey		
Nimrod/O core technology	Tom Peachey & Andrew Lewis		

eScience

What is eScience?

Categories

- Data storage, informational services, metadata etc.
- Real time data
- Data transformations
 - Visualisation
- Computational experiments
 - modelling

Modelling

Computational experiment

Needs CPU power

Can simulate real world experiments

This is how it all began

Air pollution modelling circa 1990

Want to control Ozone

- What happens if we reduce NOx?
- What happens if we reduce ROC?

But, Ozone chemistry is non-linear

Parametric Execution

- Study the behaviour of some of the output variables against a range of different input scenarios.
 - For example, what is the expected Ozone output given the NOx and ROC levels?
- Computations are uncoupled (file transfer)
 - The result of one parameter set does do affect the results of another parameter set
- More realistic simulations
 - Increasing the number of values of NOx and ROC to explore will produce a higher resolution result

Multiple Runs

- to validate the model
 - Comparison with real world data
 - to explore the "parameter space"
 - What is the expected behaviour given new parameters?
 - for non-deterministic models to average over an ensemble
- to find parameters that optimize some result
 - After lunch

Cross product

• For each value of NOx

- For each value of ROC
 - What is the Ozone output level?

	0.1	0.2	0.3	0.4	0.5	
0.1	Job	Job	Job	Job	Job	
0.2	Job	Job	Job	Job	Job	
0.3	Job	Job	Job	Job	Job	
0.4	Job	Job	Job	Job	Job	
0.5	Job	Job	Job	Job	Job	

Cluster computing

- Where can we run these jobs?
- Idle workstations
 - Lab computers
 - Using EnFuzion
 - EnFuzion will wait until the computer is idle before it starts a job
- Dedicated computational resources
 - Resources that allow only remote access to the computers
 - These resources have been set up for the sole purpose of running computational heavy experiments.

Cluster computing - queuing

What happens if the demands increase?

Idle workstations

- EnFuzion will run one job per node.
- First in first served
- Dedicated computational resources
 - Have quotas and fair sharing policies

Cluster computing – more power

- What happens if I need more computers?
 - Use Nimrod/G
 - After morning tea

Nimrod & EnFuzion

Nimrod History

- Project History
 - Initial Cluster version 1994Nimrod/G 1997
 - EnFuzion (Axceleon) 1997
 - Nimrod/O

1999

Nimrod Goals

- Goals
 - Supports parametric
 - execution
 - Execute programs
 - Varying parameters
 - Simple scatter/gather
 - Make parallel computing easy for parametric problems

How does a user develop an application using EnFuzion?

Plan file for HLmeteorite

parameter input_seed integer random from 1 to 1000000 points 2000;

task main

copy p.x node:p.x copy projectile.input.sub node:projectile.input.sub copy projectile.x node:projectile.x substitute projectile.input.sub projectile.input node:execute ./p.x copy node:distance.out distance.out.\$input_seed copy node:temperature.out temperature.out.\$input_seed copy node:error.out error.out.\$input_seed copy node:disk.out disk.out.\$input_seed copy node:density.out density.out.\$input_seed copy node:initial_particle.out initial_particle.out.\$input_seed copy node:ejected_particle.out ejected_particle.out.\$input_seed copy node:stopped_particle.out stopped_particle.out.\$input_seed endtask

How is the experiment coordinated?

EnFuzion demonstration