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Executive Summary

Findings

This report has focused on verification and validation techniques that are
suited to GRN research methods and are of immediate, practical benefit to
the computational modelers of the ACCS community. Through an online
survey and focused interviews, this project identified the following key char-
acteristics of GRN modeling:

1. Small team size: Simulations are implemented and used by a very
small number of people, often a single developer is the single user.

2. Transient systems: Software models are developed to help under-
stand a particular research question, and are often redesigned or even
discarded as the question / understanding changes.

3. Rapidly evolving specifications: Simulations are developed and
used in an iterative situation of rapid specification change, with speci-
fications often changing as quickly as the software is run.

4. Non-linear: The precise behaviour of the complete simulation is un-
known before runtime, with emergent interactions of system compo-
nents providing the observations of interest.

Recommendations

The rapidly evolving requirements coupled with small team sizes (points
1-3 above) conspire to make many popular software engineering techniques
impractical. The following recommendations distil the most useful techniques
for such modeling:

A Maintenance of static components: Although the specifications of
such software systems undergo rapid change, many components remain



the same, and their expected behaviour is precisely known. Existing
techniques that aid development, testing, and maintenance at the com-
ponent level should be immediately incorporated into current modeling
processes. These are:

1. Design notations: Notations that aid in the design of components
and their relationships should be used as both a convenient means
of design documentation and a method to help eliminate design
inconsistencies. See Section 4.1.1.

2. Version control: Version control software, which provides a conve-
nient method of storing different versions of files, should be used
to provide documentation of historical changes and prevent data
loss. See Section 4.1.2.

3. Unit testing: Unit testing, or the testing of individual software
components, should be employed to ensure the components behave
as specified under a range of conditions. See Section [4.1.3!

4. Automatic document generation: The automatic document gener-
ation capabilities of many modern programming languages should

be used where available. See Section

B Manually tracking component interactions: For simulations with
a small number of critical components (e.g., simulations of biological
networks with five genes), methods to manually track object interac-
tions should be employed to understand expected runtime behaviour.
See Section 4.2.

C Understanding emergent interactions through visualization: Vi-
sualizations that show the relationship between micro level interactions
and macro level behaviours provide some of the most powerful methods
for understanding the system-wide dynamics of these GRN models. Vi-
sualization can aid understanding of micro and macro level interactions

at three levels (see Section [4.3):
1. Structure (or network) of interactions. Examples include network
diagrams and distribution plots.

2. Dynamics of interactions. Examples include gene expression dia-
grams and state space diagrams.

3. Function (or behaviour) of interactions. Examples include L-
systems and Niklas phenotypes.
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Opportunities for ACCS outreach are tutorials, workshops, and online
resources illustrating the benefits of these recommended techniques, targeting
biological modelers.
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Section 1

Introduction

“The intricacy and variety of biological signalling networks of-
ten defy analyses based on intuition. System properties are often
dependent on subtle timing relations and competition between
negative and positive regulators. Given the wealth of biochemical
data, a computational analysis is well suited to handling both the
complexity of multiple signalling interactions and the fine quanti-
tative details. ....... models such as these should not be considered
as definitive descriptions of networks within the cell, but rather
as one approach that allows us to understand the capabilities of
complex systems and devise experiments to test these capabili-
ties.” (Bhaller and Iyengar, 1999, page 386).

Recent advances in biology have offered unprecedented insights into the
details of phenomena such as gene regulation. This ever-increasing body of
knowledge has prompted calls for the integration of this detailed information
into a more holistic understanding in order for progress to continue (Galis,
2003). For this to occur, disciplines that operate at different levels of abstrac-
tion (e.g., the molecular details of specific regulating genes versus theory of
Boolean networks) must pool their knowledge through collaborative ventures.

These recent biological advances have coincided with a significant rise in
available computing power. Theoretical experiments and computational sim-
ulations that were once impossible to study in a feasible amount of time can
now be utilized in most scientific disciplines, providing a framework through
which new understanding and collaborative ventures can emerge. The field
of Complex Systems, which studies the macro-level behaviours which emerge
from systems composed of well-understood, interacting components, has par-
ticularly benefited from this readily available computing power. Investigating
gene regulation as networks of emergent interactions is one such avenue of




scientific endeavour.

Analyses of potential wide-scale effects in genetic regulatory network
(GRN) models address what dynamics, in principle, are possible in large
systems of interconnected switches dBornholdt, ‘2001). Such theoretical stud-
ies, which are at present practically impossible in experimental science, have
become increasingly important as evidence gathers of the relatively small
number of genes that make complex organisms, and the significance of their
interactions. Rather than replacing experimental studies, models that allow
analysis of the emergent properties of biological phenomena can provide the
pre-experimental means to drive experiments, the ability to look inside a run-
ning model, the combination of smaller-scale models to observe hypothetical
global behaviour, and demonstration that a process is sufficient to generate
an observed phenomena dJohnson et al.‘, ‘2004). An overview of the various
approaches to modeling genetic regulatory networks in this context (in the
form of an ACCS technical report) can be found at:

http://www.itee.uq.edu.au/~nic/ accs-grn/index.html

“It is unlikely that humans will ever write software with zero defects.”
m, m, page 1333). A significant proportion of these models are imple-
mented as computer software, whose emergent behaviour makes verification
and validation of correctness difficult. By relying on software-generated re-
sults, the success of scientific computing rests heavily on a solid foundation
of good software design and development practices. Developing confidence
in such software can be difficult, since the specific behaviour of the system
is often not known beforehand. The increasing use of computer software in
research has come with an increasing concern with the quality of simulation
software.

There are many techniques and much formal literature discussing the use
of software simulations and the appropriate reporting of their results (see, for
example, Barzel (1992); Sargent (1988)). The application of software engi-
neering knowledge to large systems exhibiting emergent behaviour forms an
area of active research. However, many software models developed within the
academic community (such as the GRN models within the ACCS) are often
done by single researchers working on a very specific problem. The needs
of developers of scientific software at this scale have not been adequately
addressed. Typical software engineering methodologies are geared towards
large projects which generally include teams of developers, testers, managers,
and users. Many of the issues addressed by these methodologies do not apply
to researchers within the academic community. Furthermore, many practis-
ing academic modelers have not been exposed to current programming tools
and techniques that can increase confidence in software developed.
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This project seeks to address this issue by identifying how software is used
in the research activities of a sample of current academic modelers, and by
providing a collection of tools and techniques that address the needs of these
modelers. While many advanced techniques exist to increase confidence in
simulation software, this project focuses on tools and methods that can be
quickly and easily incorporated into a research program without assuming a
computer science background.

Section |2/ provides an overview of software engineering in computational
modeling. Section [3 summarizes the results of surveys and interviews aimed
at eliciting the software development requirements of practising modelers,
while Section 4/ proposes a collection of tools and techniques that address
these requirements. Finally, concluding remarks are offered in Section [5.



Section 2

Software Engineering and
Computational Modeling

Software implementations are not the same as mathematical formalisms. It
may surprise some non-computer scientists that programming languages are
often not as well defined as mathematics (Hatton, M) Source code that
does one thing on one computing platform may do something entirely (or
often worse, subtly) different on another.

The goal of verification and validation is to gain credibility, or confidence,
in a model, and techniques to do this have been developed (Carson, M)
Since models are the same as a hypothesis, they cannot be absolutely val-
idated, only invalidated (see Guergachi and Patry (‘2003)). Sargent ( 1988)
describes the steps of the model validation process and a set of validation
techniques, which can be used subjectively or objectively (where objectively
means using some type of statistical test or procedure). In addition, there
is a wealth of literature focusing on the use of software engineering tech-
niques in the development of emergent, agent-based systems (Weif3, \m;
Zambonelli and Omicini, ‘2004).

Multi-agent systems have proven useful in the simulation of biological
networks. Khan et al. 42003‘) describe a molecular species modeled as an
individual agent with hierarchical task network structures to represent self-
and externally-initiated reactions. Johnson et al. ( 2004) point to software
engineering techniques that have been found to be useful in modeling intra-
cellular processes using object-oriented programming methods, which include
object-oriented decomposition, UML as a notation system, class hierarchies,
software patterns and component testing.

While these studies provide insights into the software development re-
quirements of some biological models, it is unclear how well they apply to
the specific modeling practises typical of researchers within the ACCS com-




munity. In order to determine these software engineering requirements, we
undertook three case studies and a general survey of practising modelers,
with a focus on those using emergent computational simulations to under-
stand regulatory systems.



Section 3

Case Studies

3.1 Current Modeling Practices

Two initial approaches were taken to understand the software development
background and practises of current complex systems modelers. The first was
a survey of the modeling community. The second was a discussion held with
researchers and students in the Complex and Intelligent Systems research
group at the University of Queensland.

3.1.1 General Survey

Anonymous survey responses were solicited from members of the ARC Cen-
tre for Complex Systems, the Festival of Doubt group (an eclectic collection
of researchers loosely based at the University of Queensland; see
http://festivalofdoubt.uq.edu.au/), the University of Queensland’s Com-
putational Biology group, and the Connectionists mailing list (which includes
an international assortment of researchers involved in neural computation).
The survey is included as Appendix|A.

The survey revealed the varied background of researchers using computa-
tional modeling (from chemical engineering to human factors), and the wide
range of computational tools and methodologies currently in use. Of the
nineteen respondents, seventeen reported using software simulations, with
models including machine learning algorithms, evolutionary computation, L-
systems, networked systems, multi-agent systems, real-time finite element
modeling and Monte Carlo simulations (among others). The majority (82%)
of respondents had at least a Bachelor’s degree in computer science.

The variance in types of software simulations reported was mirrored in
the range of hardware (Figure [3.1), operating systems (Figure [3.2), devel-
opment environments and programming languages (Figure|3.3) used by the
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respondents. These results indicate that recommendations for appropriate
software engineering techniques should not focus on any particular program-
ming platform or development environment.

Print statements were used in debugging by 82% of those surveyed, while
65% utilized language debuggers. The use of version control is summarized
in Figure 3.4. Respondent’s awareness of a collection of common software en-
gineering methods, and their deployment in their own software development
programs, is summarized in Figure [3.5. Just under a third of respondents
reported using a formal software development process, but most followed a
self-imposed simulation procedure (e.g., documentation of design, informal
specification of software functionality, implementation and testing of compo-
nents, checks against analytic solutions or published results, repeat).

Interestingly, the majority of respondents reported a development team
size of one (65%), with no team sizes greater than four mentioned. User base
sizes were also quite small, with six respondents reporting a user base of one
(generally themselves), and the same number reporting a user base of two or
three people. No user bases greater than six were reported.

An interesting perception was elicited from this survey. 65% of respon-
dents thought that an increased use of formal processes would result in
increased simulation quality, but only 29% thought that formal processes
would warrant the extra time they would require. This stems from the gen-
eral feeling that an increased use of software engineering techniques would
not change the results of simulations, but would instead result in improved
source code (as in a better simulation architecture, more reusable and effi-
cient code, shorter development times, etc.). Some respondents expressed a
concern that software engineering techniques were only suited to larger-scale
models, or that they may not be appropriate in open-ended discovery situa-
tions. However, interest was expressed in learning how such methods could
be applied to simulation scenarios. The time respondents would be willing
to spend learning appropriate software engineering techniques is summarized
in Figure 3.6.

3.1.2 General Discussion

To obtain a more in-depth overview of the general modeling practices of com-
putational researchers, a discussion was held with members of the Complex
and Intelligent Systems group at the University of Queensland. Members of
this group fell into two camps: primarily Matlab users, and users of general
purpose programming languages. Models were generally reported as a collec-
tion of components. The point was raised that the use of different frameworks
shift the focus of effort onto different modeling aspects.
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Figure 3.1: Hardware used to run the simulations reported by survey respon-
dents.



Simulation Operating System
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Figure 3.2: Operating systems used to implement and run the simulations
reported by survey respondents.



Simulation Programming Language
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Figure 3.3: Programming languages used to implement the simulations re-
ported by survey respondents.
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Version Control
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Figure 3.4: The use of version control reported by survey respondents.
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Software Engineering
Methods
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Figure 3.5: Awareness and deployment of common software engineering
methods reported by survey respondents.
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Time willing to spend learning SE techniques

Number of respondents

Weeks Months

Figure 3.6: Amount of time survey respondents would be willing to spend
learning appropriate software engineering techniques. Note that of the two
respondents who reported no time, one already teaches in the area, and
the other would not learn the techniques but would direct programmers to
appropriate methods.
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Simulations implemented using general purpose programming languages
were generally in the order of thousands of lines of code, with the soft-
ware programmed in a bottom-up fashion (i.e., lower-level components im-
plemented, then integrated into higher-level modules, with this process even-
tually resulting in a complete simulation). Many of the software components
developed were intended for reuse in other models and/or scenarios.

The group was asked to recommend techniques that would help increase
confidence in software correctness, with an emphasis on practical methods
for use in the research situations of modelers in the group. The suggested
techniques were:

e Unit tests

e Design by contract
e Code sharing

e Code review

Interestingly, even within this closely related group of researchers, terms
such as ‘model’ meant different things to different people, highlighting the
need to carefully define what is being addressed before useful discussions can
be achieved.

3.2 Case Study 1: The Artificial Genome

A particular genetic regulatory network model which has proven popular in
macro-level studies of GRN dynamics is the Artificial Genome (Reil, M)
The model is summarized in Figure 3.7.

The Artificial Genome (AG) has proven to be quite versatile. Not only
has it been used to analyse potential network effects of sequence-level muta-
tions dWatson et al., 2004), it has been extended to include the regulation of
small RNA molecules dGeard and Wiles‘ ‘2003‘), to incorporate finer-grained
inhibition and asynchronous updating dHallinan and Wiles, ‘2004&@), added
enhancer and inhibitor sites, and ‘proteins’ that attach and detach from the
sequence dBanzhaﬂ, 2003, ‘2004). Willadsen and Wiles (2003) discussed how
variations in the connectivity and degree of inhibition of AG networks affect
the behaviour of the networks. The AG has also been used as the basis of
GRN models used in an evolutionary context. Bongard and Pfeifer dQOOl);
Bongard (2002) utilize an artificial regulatory network similar to Reil’s model
to grow agents that are evaluated for fitness in a virtual environment. The
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Figure 3.7: The Artificial Genome model. Sequences consisting of the 4
base values 0,1,2,3 are searched for the promoter sequence ‘0101°. A fixed
number of values after the promoter sequence are defined as genes. A gene
is expressed by incrementing each element by 1, modulo the number of bases
(4). If the gene product binds to a matching sequence in the genome, its
gene regulates the next gene downstream of the binding site.
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AG has been used to integrate a genetic sequence with a developmental phe-
notype (Watson et al., ‘2003‘), and as the basis for a GRN model that con-
trols a group of robots, with the controller evolved with a genetic algorithm
Taylor, ’2—003)

3.2.1 Artificial Genome Software Development

Two University of Queensland postgraduate students who use models based
on the Artificial Genome were interviewed to determine their modeling process
and the software development requirements of their models. Both models
were implemented using the C++ programming language and the Boost li-
braries. This choice was made due to the range of portable software libraries
available for basic functionality (such as random number generation), speed
of code execution, the versatility of the language, and the background train-
ing of the modelers. The primary development environment consisted of the
general Unix build tools (e.g., text editor, g++ compiler, etc.). One of the
models incorporated the Python language for visualization, the other used
Perl to process raw simulation output. Both models were in the order of
one thousand lines of source code. The models were comprised of an object-
oriented hierarchy of components, implemented by a single developer. In one
model, unit testing (using the Boost unit testing libraries) was used. Results
were written to standard output, and visualizations (e.g., of expression pat-
terns: see Figures|3.8 and [3.9; and of network weights: see Figure 3.10) were
used to monitor software behaviour. While the simulation code changed over
time, many of the lower-level components remained the same.

3.3 Case Study 2: Compensatory Growth

The use of a computational model to study the morphological aspects of
plant growth in response to damage formed the second case study of biolog-
ical modeling. The simulation was used to investigate the phenomenon of
compensation for defoliation in cotton plants by modeling the interactions be-
tween various plant components and the environment dThornby et al.‘, ‘2003).

3.3.1 Software Development Requirements

This model was implemented entirely in the L-studio front-end to CPFG
dPrusinkiewicz et al., ‘2000), primarily by a single developer (a botanist). It is
comprised of a set of components, implemented in approximately five hundred
lines of code, and was developed in a bottom-up style of first implementing

16



I Gene Expression of Genome 0: 160 Steps

Figure 3.8: Example expression pattern of an Artificial Genome network.
Time moves from left to right, with each gene identified in the sequence
taking a position along the y-axis. At each time-step, activated genes are
represented as coloured boxes. This visualization allows the interactions
between genes to be viewed over time.
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Figure 3.9: Custom expression pattern viewer (image courtesy of Nicholas
Geard).
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Figure 3.10: Custom network weight visualization (image courtesy of
Nicholas Geard).
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Figure 3.11: The visual output of the hybrid model used to study compen-
sation for defoliation in cotton plants.

these components and then integrating them. This form of computational
model was used due to its ability to model at an abstract level for qualitative
study, and because hundreds of actual plant experiments would have taken
an infeasible amount of time. In order to analyse the emergent interactions of
the model, a visualization of the plant through development was implemented
(see Figure 3.11). The model was designed to be constantly changed, as it
formed the current version of the hypothesis.

In L-studio, there are no provisions for automated test cases or dedicated
debuggers. However, no L-system bugs were identified — the issues in this
style of implementation were reported to be errors in model assumptions (as
opposed to errors in the implementation). To find these erroneous assump-
tions, laboratory experiments were required to determine what was wrong.
On the other hand, the researcher was interested in using test cases, since
this process would formalize the modeling process and perhaps make assump-

20



tions more explicit. While time is an issue, both in terms of implementation
time and time to learn new techniques, he believes more rigour in the imple-
mentation of the model would be useful, and a more rigorous form of testing
would improve confidence in the emergent properties of the simulations.

Many software engineering techniques are used in this project, but not
in a formal manner. For example, conceptual modeling is employed, but not
in a language such as UML, while versioning is practised by saving different
versions of a file separately.

3.4 Case Study 3:
Regulatory Network in Pea

The final case study was a computational model developed to specifically
study the interactions of the regulatory network controlling branching in pea
(Pisum sativum) (Harding, 2003). This model was developed since real-world
experiments have resulted in a number of components and variables that
make the integration of existing hypotheses with new ones complicated and
time-consuming. Through comparisons with experimental data, the model
has been successfully used to refine and improve the underlying biological hy-
potheses. The regulatory network hypothesis under investigation is shown in
Figure 3.12, while the graphical output of the model is shown in Figure[3.13.

3.4.1 Software Development Requirements

This model was once again developed in L-studio/CPFG, based on a set
of components and developed in a bottom-up fashion (i.e., initially starting
with two genes, then more genes and hormones were added while comparing
the simulation behaviour to experimental data). The model was refined as
more experimental data was obtained, and also on the basis of simulation
output. The primary developer was a biologist.

As found in Section 3.3, there are no debugging tools readily accessible
to this project. The researcher expressed interest in automated and manual
test cases for this model’s development — if they could be integrated with the
L-studio environment. A more rigorous model development was considered
worthwhile, as this was thought to give greater weight to whether the model
fits the data. Additionally, she considers the idea of version control as a
useful technique to facilitate back-tracking and branching of ideas.
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Figure 3.13: Model visualization of branching regulatory network in pea.
This model runs through various genotype combinations for the root and
shoot of a pea plant. The biological result is shown on the left and the
model’s predicted result is on the right.
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3.5 Common Requirements

Features common to all of the models surveyed in this study can be summa-
rized into the following four key points:

1. Small team size: The simulations are implemented and used by a
very small number of people — often a single developer is the single
user;

2. Transient systems: These software models are developed to help
understand a particular research question, and are often redesigned or
even discarded as the question / understanding changes;

3. Rapidly evolving specifications: The simulations are developed
and used in an iterative situation of rapid specification change, with
specifications often changing as quickly as the software is run;

4. Non-linear: The precise behaviour of the complete simulation is un-
known before runtime, with emergent interactions of system compo-
nents providing the observations of interest.
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Section 4

Recommendations

Rapidly evolving requirements coupled with small team sizes (points 1-3 in
Section [3.5) conspire to make many software engineering techniques imprac-
tical for the modelers surveyed. The following recommendations distil the
most immediately useful techniques for such modeling.

4.1 Maintenance of Static Components

The regulatory models surveyed generally exhibited a component-based ar-
chitecture. Although the systems on the whole changed rapidly, many of their
components remain unchanged for long periods, and their expected isolated
behaviour is known before runtime. The following techniques aid the devel-
opment, testing and maintenance of such logical software units. They can be
easily incorporated into any software development program, and are deemed
to be of immediate, practical benefit to regulatory modeling projects.

4.1.1 Design Notations

Spending more time and effort at the design phase of a software project im-
proves development speed and productivity (Cusumano et al.‘, ‘2003‘). Nota-
tions that aid in the design of component functionality and their relationships
(e.g., inheritance, class interactions), should be used both as a convenient
means of design documentation and to help eliminate design inconsisten-
cies. Formal notations, as opposed to ad hoc maps or diagrams, are prefer-
able since they provide placeholders for required information (which help
to reduce inconsistencies) and provide a formal language which aids com-
munication with other team members, or with oneself in the future. UML
(http://www.uml.org), provides two notations that aid component design:
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Class Diagrams: which document classes and their relationships, and

Object Diagrams: which document instances instead of classes to explain
complicated class relationships (such as recursive relationships).

A good introduction to these notations is provided online by Borland at
http://bdn.borland.com/article/0,1410,31863,00.html

4.1.2 Version Control

Version control software provides a means of conveniently storing different
versions of files. Changes to files are accompanied with comments, which
provide a record of how the model changed. Versions can be tagged and
branched, allowing easy retrieval of major revisions or milestones of the code
(e.g., the code used to generate the results of a particular publication). Ver-
sion control systems prevent the loss of information through overwriting, as
local copies of a file are modified before being merged with the version control
repository, and deleted/altered parts of a file are available by checking out
previous versions. Remote repositories provide automatic remote backup of
files. Version control systems also help teams larger than a single developer
(or a single developer working at multiple locations) ensure that the correct
version of a file is being worked on. Two of the most popular version control
systems are:

CVS: https://www.cvshome.org/

Subversion: http://subversion.tigris.org/

4.1.3 Unit Testing

Unit testing is the testing of individual software components against pre-
defined specifications. This helps improve confidence that components be-
have as expected under a range of conditions. Libraries are available for many
popular programming languages that help automate this testing process.
Such libraries include:

Boost test libraries: for C++, available at
http://www.boost.org/libs/test/doc/index.html

UnitTest: for Python (comes as part of the standard Python library)
NUnit: for the NET framework, available at http://www.nunit.org/

JUnit: for Java, available at http://www. junit.org/
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4.1.4 Automatic Document Generation

The automatic document generation capabilities of many modern program-
ming languages can generate both source code documentation (hyperlinked
where appropriate) and often diagrams of component relationships from cus-
tom source code comments. A particular advantage of using these systems is
that documentation can occur as the source code is written, making it easier
to record detailed information. Document generation software includes:

Doxygen: for many languages, including C, C++, Java, Objective-C and
IDL, available at http://www.doxygen.org/

NDoc: for the NET framework, available at http://ndoc.sourceforge.net/

JavaDoc: for Java, see http://java.sun.com/j2se/javadoc/
(class diagrams can be achieved with third party tools such as UML-
Graph, available at http://www.spinellis.gr/sw/umlgraph/)

4.2 Manually Tracking Component Interac-
tions

For simulations with a small number of critical components, simple means
of manually tracking object interactions should be employed to aid under-
standing of expected runtime behaviour. Two such methods are:

UML Interaction Diagrams: description available at
http://bdn.borland.com/article/0,1410,31863,00.html

Behaviour Trees: more information available at
http://www.sqi.gu.edu.au/gse/papers/

4.3 Visualization

Visualization provides a valuable way to understand emergent phenomena
(Dorig, M) Visualizations that show the relationship between micro level
interactions and macro level behaviours are some of the most powerful meth-
ods for understanding the system-wide dynamics of the models surveyed.
Other methods that track the interaction between system components (such
as system testing and audit trails) are generally less useful due to the emer-
gent characteristics of the models and their rapidly changing specifications.
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Good visualizations provide the researcher/developer/user a means of
developing an understanding of system-wide behaviour, and provide a way
of identifying unexpected phenomena and software bugs. Visualization can
aid understanding of micro and macro level interactions at three levels:

Structure (or network) of interactions: Examples include network dia-
grams, which show the structure of interactions between network nodes,
and distribution plots, such as in-degree and out-degree distributions,
which illustrate larger-scale network structure. The Pajek program is
useful for such network-level visualization (see
http://vlado.fmf.uni-1j.si/pub/networks/pajek/).

Dynamics of interactions: A good example is gene expression diagrams,
which show activated genes over time and provide a visualization of
patterns that emerge from networks of interactions. See Reil (1999) for
an example of their use.

Function (or behaviour) of interactions: Examples include L-systems
(200

(Prusinkiewicz et al. 0)), which are particularly suited to plant

modeling but can be extended to other visualization tasks, and devel-
opmental phenotypes that can be conveniently placed under selective
pressure (see Niklas (1997)).
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Section 5

Conclusions

Computational models are becoming an increasingly popular means to un-
derstand regulatory models in biology. While the distinction between the
software development stage and the usage stage is less clear cut in scientific
software than in commercial software (Johnson et al.‘,‘2004), many techniques
from the software engineering field are directly applicable to the development
and use of biologically-grounded regulatory models. This project has focused
on existing software development techniques that provide immediate, prac-
tical benefit to modelers of such systems.

Through an online survey and focused interviews, commonalities between
various regulatory models were identified. Software models were generally
implemented and used by a small number of people. Development followed an
object-oriented paradigm. The specifications of the model changed rapidly,
and software systems were generally written to address a specific research
question. The behaviour of the software was unknown before runtime.

While surveying existing modeling practises, it became clear that a lan-
guage barrier exists between biological researchers and the software engineer-
ing community, which has resulted in many techniques not being employed.
Terms such as ‘unit testing’, ‘version control” and ‘design notations’ sounded
irrelevant to the biologists surveyed, but were found to be interesting once
their function was explained. FEncouragingly, the modelers surveyed were
generally willing to learn software engineering techniques shown to be useful.

The small team sizes, coupled with rapidly evolving requirements, con-
spire to make many software engineering techniques impractical. For ex-
ample, formal proofs and audits are unlikely to be applied in the day to
day development and usage of such systems. However, the surveyed systems
exhibited a component-based architecture, with many of these components
remaining unchanged for long periods. Thus, techniques that aid the develop-
ment and maintenance of small logical units, such as design notations, version
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control, unit testing, and automatic document generation, can all serve im-
mediate, practical benefit to biological modelers. In addition, methods that
allow the micro level tracking of component interactions, and visualizations
that aid understanding of micro and macro level dynamics, are also highly
useful.

Opportunities for ACCS outreach from this project include tutorials,
workshops, and online resources of relevant software engineering techniques
targeted at the biological modeling community.
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ACCS Online Survey: Tools and Techniques in Simulation Development

Thank you for taking the time to complete this survey. It is part of an ACCS project aimed at identifying tools and techniques that

help increase confidence in the correctness of software simulations, with a focus on artificial life, complex systems and
computational biology research.

The primary purpose of this survey is to gather information on the tools and methodologies currently used by the general research
community when designing, implementing and testing software simulations. A secondary objective is to collect opinions on why

software simulations and software engineering methods are/are not employed.

All responses are anonymous, but please feel free to contact me via email with more information, or with any queries about the

project.

Field of work: Please briefly describe your field of research / position:

Simulation usage: Do you use software simulations in your work?

OYes (please continue to the next question)

ONo If you could be convinced of the accuracy of software simulations (e.g., through validation and
verification techniques), would you employ them in your research? Please briefly explain:

Thank you for participating in this survey Submit |

CS background: What is your computer science background?

[ IHigher degree [1Bachelor’s degree
[ITechnical college / TAFE [1Self-taught

[]Other: |




Type of simulation: Describe the type(s) of simulation that you design/develop/use (e.g., optimization, modelling of
natural processes, etc.). Please include any modelling paradigms (e.g., neural networks, cellular automata, Boolean
networks) that are often used.

Simulation context: Describe how your simulations fit in with your research activities (e.g., get grant, develop software,
run with sensible parameters, analyse results, refine software and parameters, run again, analyse again, write report,
etc.).

Team size: How many people are involved in simulation development?

O1 (just me)

O Other: |

User base: How many people are involved in the use of your simulations?

O1 (just me)

O Other: |

Implementation operating system: On what operating system(s) do you implement your simulations?

[ IWindows [ILinux [ISolaris [lIrix (ozone) [IOther: |
[ 1Unix (other) [1Mac 0S [ 1Don't know

Simulation operating system: On what operating system(s) do you run your simulations?

[IWindows [JLinux [[ISolaris [Jlrix (ozone) [1Other: |
[1Unix (other) [[IMac 0S [1Don't know

Simulation hardware: On what hardware do you run your simulations?




[ 1Desktop [ISupercomputer [JPC cluster ["10ther: |
[ 1Don't know

Programming language: Which programming languages do you use to implement your simulations?

[]Ada [1c []C++ L]c# [[]Cobol

1D [ |Eiffel [ IFortran [ 1Java [ ]Lisp

[ ]L-systems [ IMatlab [ ]Objective-C [[]Occam [ 1Pascal
[ 1Perl [ 1Python [ IRuby [ 1Scheme []Simula
[ 1Smalltalk []Tcl [ 1Visual Basic

[]Other: |

Primary development environment: What would you consider to be your primary development environments /
languages? (e.g., Matlab, C++ in Visual Studio, gcc and vi, etc.)

Debugger: What do you use to debug your software?

[ILanguage debugger [ IPrint statements
[INo debugger []Postgrads

11 don't introduce bugs []Other: |

Version control: What version control software do you / your research group use?

[INone
[JCVS ["]Subversion []Visual SourceSafe [ JRCS

[]Other: |

Methodology awareness: Please select all of the software engineering methodologies listed below that you are aware of.

[ ]Acceptance testing (Testing conducted by the user (as opposed to the developer(s)))

[ 1Audits (Reviews performed by a 3rd party)

[ 1Design patterns (Collections of recurring problems and their solutions in software design)
[IFormal proofs (Mathematical proofs ensuring all inputs produce correct outputs)

[ ]Integration testing (Testing of integrated sub-components)

[ IModelling languages (Notations for specification and design of software (e.g., UML))




FlProcess patterns (Collections of recurring problems and their solutions in the software development

process)

[ ]Regression testing (Selective re-testing of subcomponents as they are modified)

[ ]System testing (Testing of whole system against requirements)

[1Technical reviews (Checks items conform to specifications)

FTiracing (Traces the relatiqnship between development phases; e.g., between user requirements
and software requirements)

[ 1Unit testing (Tests (usually automated) of specific modules)

" |Other: |

Methodology deployment: Which do you employ in the design and development of your simulation software?

[]Acceptance testing [] Audits [1Design patterns
[JFormal proofs [lIntegration testing [IModelling languages
[IProcess patterns [IRegression testing []System testing
[ITechnical Reviews [JTracing [1Unit testing
["10ther: |

Use of formal (or informal) processes: Do you have formal or other processes you / your research group adhere to in the
design and development of software simulations?

ONo
OYes (Please describe briefly):

Usefulness of software engineering: Do you think an increased use of software engineering methods would improve the
quality of your simulation results? The quality of the final science published?

OYes ONo

(Please briefly explain):




If so, do you feel that having a formalised process for the design and implementation of your simulations would result in
significant enough improvements to warrant the extra time?

OYes ONo

(Please briefly explain):

Time constraints: How much time would you be willing to spend on learning about and using software engineering
techniques that might prove useful to your research?

O None OHours O Days OWeeks O Months O Other

(Please briefly explain):

Other comments: If there are any other comments you would like to add, including any advice on excellent modelling
practices, please insert them here.




Submit |




	Executive Summary
	Contents
	Acknowledgments
	1 Introduction
	2 Software Engineering and Computational Modeling
	3 Case Studies
	3.1 Current Modeling Practices
	3.1.1 General Survey
	3.1.2 General Discussion

	3.2 Case Study 1: The Artificial Genome
	3.2.1 Artificial Genome Software Development

	3.3 Case Study 2: Compensatory Growth
	3.3.1 Software Development Requirements

	3.4 Case Study 3: Regulatory Network in Pea
	3.4.1 Software Development Requirements

	3.5 Common Requirements

	4 Recommendations
	4.1 Maintenance of Static Components
	4.1.1 Design Notations
	4.1.2 Version Control
	4.1.3 Unit Testing
	4.1.4 Automatic Document Generation

	4.2 Manually Tracking Component Interactions
	4.3 Visualization

	5 Conclusions
	References
	Index
	A General Survey

