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Abstract

The Behavior Tree notation is used as part of a framework for developing complex computer systems.
The framework is designed to simplify the process of constructing a formal specification of a system
from its informal functional requirements. To give a meaning to Behavior Trees, this paper describes
a lower-level language called Behavior Tree Process Algebra (BTPA) and its operational semantics, and
defines a mechanical translation of Behaviour Trees into BTPA. The process algebra provides several
methods by which processes may communicate with each other and interact with the environment: CSP-
like synchronisation; send/receive message passing; and shared variables. The meaning of a BTPA process
is defined with respect to the current state of the system (value of the components) and the active processes.

1 Introduction

Obtaining a set of requirements which is complete and consistent is one of the crucial steps in implementing
a large software system. To help software engineers communicate effectively with their clients about their
requirements, a common language is needed which is both easy to understand and work with, and which
also has a precise meaning. The Behavior Tree program development framework developed by Dromey
[Dro06, Dro03] is intended to fit these criteria by allowing rapid translation of informal requirements into
individual Behavior Trees, in a way which is traceable and suitable for validation by clients without knowledge
of formal languages. In this paper we give a formal semantics for Behavior Trees, providing an unambiguous
reference for their meaning and making them amenable to tool support such as simulation and model checking.

A Behavior Tree system is formed from a set of components with state, and the behaviour of the system is
described by a Behavior Tree. The notation includes constructs for message passing (events) and synchroni-
sation, as well as testing and updating the state of components. To give a meaning to this core functionality
of Behavior Trees, we describe a lower-level language called Behavior Tree Process Algebra (BTPA), for which
we provide an operational semantics, and define a mechanical translation of Behaviour Trees into BTPA. An
advantage of using a lower-level language to describe Behavior Trees is that the graphical notation, which is
designed to be user-friendly, can be adapted or extended without directly affecting the underlying semantics
– all that is required is a translation of the new notation into BTPA. The challenge is to define a flexible core
language which can express the constructs of the Behavior Tree notation. For the purposes of providing quick
feedback to the behaviour modeller, we also desire the behaviour of a system to be easily simulated via a tool.

The paper is structured as follows. In Sect. 2 we give a brief introduction to the Behavior Tree notation. In
Sect. 3 we present the BTPA language, into which we map the Behavior Tree constructs, before defining a
semantics for BTPA in Sect. 4.

1.1 Related work

The most widely known framework for developing a program from its requirements is UML [RJB98]. However
the notation lacks a precise semantics and can become cumbersome due to its large variety of diagrams (some
of which have been given a semantics, e.g., Activity Diagrams have been given an encoding as petri-nets
[ED03]). It has been argued that UML’s advantage lies in being graphical and requiring little specialist

1



knowledge to understand. In contrast, a specification language such as Z [Spi92] has a fully formal semantics
and mature methods for correct program development, but is harder to validate against user requirements
since expert knowledge is required to understand Z specifications. Behavior Trees are intended to provide the
benefits of a simple graphical notation, especially user validation, but also have a straightforward and precise
semantics that supports simulation and formal verification via model checking.

The meaning of a Behavior Tree is process-based, and a large range of languages for expressing the behaviour
of concurrent processes have been developed; some of the better known include CSP [Hoa85], CCS [Mil82],
Petri Nets [Pet81], Action Systems [BKS88], Unity [CM88], and State charts [HN96]. The differences be-
tween each typically lie in their method or methods of interprocess communication (IPC). In his book on
network programming for Unix, Stevens [Ste99] identifies three methods of IPC: synchronisation, message
passing, and shared variable1. Using this implementation-based classification, CSP has synchronisation (via
its actions) as well as message passing (using channels). In its original form, CSP does not have shared
variable communication, though it has been extended to include a notion of state by being combined with Z
(Circus, [WC02]). In contrast, IPC in Action Systems is based on shared variables, with no primitive notion
of synchronisation; CSP and Action Systems have, however, been combined by Butler [But92]. Statecharts
[Har87] allow both synchronised and shared variable communication, though there is not a single source for
their precise semantics; the most authoritative appears to be given in [HN96], which describes the semantics
(in natural language) in terms of an execution tool.

There are three features of the Behavior Tree language which distinguish it from most other languages.
Firstly, it allows individual processes to have access to the full context in which it is executing, including
concurrently executing threads. This allows a process to “kill” another process and all of its subprocesses
(similar to CSP’s interrupt operator). It also allows new processes to be spawned during execution (as is
allowed by the π-calculus [Mil99]). Secondly, the language includes atomic composition, which creates a
more expressive language, and allows small, simple statements to be built into a single atomic action. And
thirdly, the languge includes a type of message passing IPC where the sender of the message is not blocked
if there are no receivers. This can be used to model a broadcast message which is received by a dynamically
changing number of consumers; this system for IPC is implemented by the Elvin messaging system [SAB+00]
produced by Mantara Software [Man]. This approach is also suited to modelling incoming information from
the environment, which does not “synchronise” with the system being specified but must be captured at the
correct moment: the system must be ready to receive the information when it happens or the event will
be missed. The Behavior Tree language also allows synchronised and shared variable IPC: the model for
synchronisation is based on that of CSP and its alphabets, and shared variable communication is modelled in
the usual way, with processes able to test and update the state.

Each of these three differences stems from the Behavior Tree notation being developed for systematic require-
ments capture. While concepts such as CSP’s interrupts and checkpoints are elegant formalisations, they
do not commonly appear in client-produced natural language requirements. Similarly, requirements will not
typically assume a synchronisation between the system and its environment, but instead specify that the
system must be ready to respond to an event when it occurs.

2 Behavior Trees

In this section we provide a very brief and informal description of Behavior Trees; for more detail, see,
e.g., [Dro06, Dro03, SWH+04]. Common Behavior Tree nodes are given in Fig. 2, and the constructors are
described in Fig. 3. Some variable-naming conventions are described in Fig. 1. The notation is used for a small
example given in Appendix C. For ease of presentation we write Behavior Trees from left-to-right, wrapping
across lines and with the root node in the top left, though usually Behavior Trees are written top-down with
the root node centre-top. When convenient, to save space we use an equivalent textual notation.

The nodes of a Behavior Tree are like statements in a programming language, and include behaviour such as
testing and updating of values (guards and state realisations), receiving and sending messages, and synchro-
nising. An iterative control structure can be written using reversion nodes, and conditionals can be written

1Stevens also identifies a fourth method of IPC, remote procedure call. This can be regarded as a special case of message
passing – the distinction is not important at our level of abstraction.
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N Behavior Tree nodes
T ,Ti Behavior Trees
π,S ,TT Multisets of Behavior Trees
C ,Ci , x Variables (including components)
s, v Values
~x , ~v Lists of variables, values
D Contexts
σ States (of the system)
e,m Events, messages

Figure 1: Variable naming conventions

Node Box notation Text notation Description
Basic nodes

State Realisation
C
[s] C[s] Component C “realises” (is assigned)

state (value) s.

Guard
C

???s??? C ??? s ??? Blocks until component C is in state s.

Output event
C

< e(~v) >
C < e(~v) > Component C outputs (generates)

event e with values in the list ~v .

Input Event
C

> e(~x ) <
C > e(~x ) < Blocks until component C receives

event e, storing the values passed into
the variables in ~x .

Other nodes

Goto N
=

N = Behave like the tree rooted at node N .
A goto node will typically be a leaf
node.

Process kill N
−−

N−− Kill any behaviour associated with the
tree rooted at node N .

Reversion N ˆ Nˆ This is a way of repeating behaviour.
Behave like closest ancestor node N , in
addition killing all behaviour begun at
or below the destination reversion node.

Synchronise N @m N@m Participate in synchronisation event m,
and execute N . Each node N@m is
blocked until all other nodes participat-
ing in m are ready. When ambiguity is
not possible, the tag m may be omitted.

Figure 2: Common Behavior Tree nodes
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Type Box notation Text notation Description

Sequential
composition N →

T1

‖ · · ·

Tn

N ; [[T1, ..,Tn ]] Execute N , followed by the
trees T1..Tn . Other pro-
cesses operating in parallel
may have their behaviour
interleaved between N and
T1..Tn .

Atomic
composition N

T1

‖ · · ·

Tn

N ;; [[T1, ..,Tn ]] Execute N , followed by the
trees T1..Tn . Other pro-
cesses operating in parallel
may not have their behaviour
interleaved between N and
T1..Tn .

Nondeterministic
composition

T1

[] · · ·

Tn

T1 [] .. [] Tn Execute one branch from a
multiset of possibilities. Ex-
ecution of a nondeterministic
composition blocks until one
of the processes can take a
step.

Special trees

Selection
C
?s? → T C ? s ?; T Behaves as tree T if compo-

nent C is in state s. If com-
ponent C is not in state s,
the entire process terminates
(never executes).

Multiple selection
C1

?s1?
→ T1

[] · · ·
Cn

?sn? → Tn

C ? s1 ?; T1

[] · · ·
Cn ? sn ?; Tn

Nondeterministically choose
a Ti for which Ci = si . Those
Ti which are not chosen ter-
minate (never execute).

Figure 3: Behavior Tree constructors
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by combining non-deterministic choice with guards. The notation also includes a “goto” node, which is used
as a shorthand when two trees behave identically.

A Behavior Tree is one of the three forms in Fig. 3:

1. a node sequentially composed with a multiset2 of trees;

2. a node atomically composed with a multiset of trees; or

3. a nondeterministic composition of trees.

A leaf node is represented by a node sequentially composed with an empty multiset of trees. Typical sequential
execution is achieved when a node is sequentially composed with a singleton multiset of processes. Parallelism
is introduced when a node is sequentially composed with a multiset of two or more trees; each tree represents
a new process which is ready for execution. Atomic composition also involves a multiset of processes, though
typically it will have exactly one element in it.

In addition, the special selection syntax C ? s ? may be used to model a tree that is guarded by the condition
C = s, except that if C = s does not hold the tree immediately terminates (instead of blocking).

The node types goto, kill, and reversion, all assume that there exists a unique destination node N elsewhere
in the tree. If this is not the case, the behaviour of these nodes is undefined. Such undefinedness can be easily
detected by static analysis.

Summary. The Behavior Tree notation is designed for translating informal requirements, and hence includes
nodes for manipulating the state and expressing the different types of communication that may appear in
computer systems. In the next section we provide a more general core language which encompasses the
Behavior Tree notation, and provide a straightforward translation from Behavior Trees into the core language.

3 The process algebra BTPA

In this section we present a process algebra, BTPA, and describe how it may be used to represent the Behavior
Tree notation given in Sect. 2.

3.1 Elements of the process algebra

Variables, values and state. We assume a set Var , representing variables (components), and a set Val ,
representing values of variables. The state3 is given in the usual way as a function from variables to values,
State =̂ Var → Val .

Processes. The set Proc, representing processes, is formed of all possible terms constructed form the op-
erators in Fig. 4. The language constructors include those in the Behavior Tree notation (Fig. 3), and are
familiar in the process algebra domain: sequential, atomic, and nondeterministic composition. We do not treat
parallelism as a separate operator as with most algebras; instead, parallel behaviour is introduced when there
is more than one process on the right-hand side of sequential or atomic composition. (Some consequences
of this are discussed later.) The algebra also includes a nonblocking operator, �, which we call else-skip. A
tree �T behaves as T if T is enabled, or terminates if T is disabled; it is used to model the Behavior Tree
selection constructor in Fig. 3.

2A multiset, or bag, allows more than one instance of an element to be present. We use a multiset of trees rather than a set
to allow multiple copies of the same tree to be executed concurrently.

3In this paper we will use the term “state” to refer to the state of the system and the term “value” to refer to the state of a
single component, except when referring to the node type “state realisation”, which refers to a single component.
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Constructors
N ; TT Sequential composition
N ;;TT Atomic composition
T1 [] T2 Nondeterministic composition of processes T1 and T2

�T Execute T if it is enabled, otherwise terminate T .

Figure 4: BTPA constructors

For convenience, when TT is empty, i.e., N is a leaf node, we write just N , and when TT is the singleton
bag [[T ]] we write N ; T or N ;;T . Nondeterministic composition may be generalised to any finite number of
processes.

Contexts. A BTPA system, which we call a context, is made up of the current state and a multiset of (active)
processes, i.e., Ctx =̂ (bag Proc) × State. For a context D, we write D.π to refer to its active processes, and
D.σ to refer to its state. In the execution of a system, each step alters the context in some way.

For convenience we define the notation T ·S as the bag formed by adding element T to bag S . This and other
bag operators are described in Appendix A. For compactness we “lift” the operator to contexts, so that T ·D
is the context formed by adding the process T to the active processes of D, i.e.,

T ·D =̂ (T ·(D.π),D.σ)

For convenience, other multiset operators are lifted to contexts in a similar way.

Environment. In addition to the context, we maintain a static execution environment, which contains two
mappings: a labelling system for (sub)processes, and a function giving the synchronisation alphabet of each
tree.

Label mapping. Given a process T , the environment includes a function ρ:BTLabel 7→ Proc, which allows
retrieval of the process corresponding to a given label. It stays constant throughout the execution of T . The
function ρ is required for defining the behaviour of reversion, kill and goto nodes; a method for constructing
ρ is given in Appendix B.

Synchronisation alphabet. Synchronisation on message m occurs when all active threads that have m in
their alphabet are ready to participate in m. The environment therefore includes a function α:Proc → P Msg
which maps each process to the synchronisation events it may participate in. The function α can be populated
using static analysis on the tree, and should satisfy the following healthiness conditions as introduced in CSP
[Hoa85]:

α(N ; T ) = α(T ) if α(N ) ∈ α(T )
α(T1 [] T2) = α(T1) if α(T1) = α(T2)

As with CSP, parallel processes may or may not have disjoint alphabets. For a context D, we define α(D) as
the union of alphabets of all the processes in D.

BTPA Nodes. The basic BTPA node types, which allow state tests and updates, synchronisation, and
message passing, are given in Fig. 5.

We introduce a general node type specification command (cmd) that operates on contexts. A cmd has a
“guard” predicate that must be satisfied for the command to be executed, and an “effect” relation that
specifies how the context is updated.

[P(D),Q(D,D′)]

P is a predicate on contexts; Q is a relationship between contexts (pre- and post-contexts). A cmd R =̂
[P(D),Q(D,D′)] will take effect if guard P is satisfied in the current context, and will update the context to
satisfy Q . If P does not hold in the current context, R cannot execute (hence, this is a blocking semantics).
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Nodes Type
[Guard ,Effect ] Specification command (cmd)
R sendm(~v) Send message m with values ~v
R recv m(~x ) Wait for message m and store values into variables ~x
R syncm Participate in synchronisation m

Figure 5: BTPA nodes

We allow Q to be arbitrarily complex, though in Behavior Tree notation the possibilities are restricted; we give
the translations for the Behavior Tree nodes later. Because the node has access to all other active processes
through D.π, we can specify complex behaviour, such as, for example, blocking until some combination of
other threads becomes active.

We also have three types of nodes for modelling communication, send, recv and sync, each of which may be
associated with a specification command R. The inclusion of R allows a state test or update to be associated
atomically with the communication. A message m(~v) can be sent by sendm(~v), which represents a message
(or channel) named m, with a possibly empty list of values ~v . The process sending the message does not
block if there are no receivers – the sender proceeds and the message is lost. We model the reception of a
message m by recv m(~x ). Such a node blocks until m is sent via a sendm(~v) node, and it then stores the
values sent, if any, into the variables in ~x . A recv m(~x ) node will only respond if the length of ~x is the same
as the length of ~v . A node syncm blocks until all active processes which contain m in their alphabet are at
their synchronisation point.

3.2 Translating to the underlying notation

In this section we describe how to translate a Behavior Tree T into a BTPA process. The translation is
formed by the following (straightforward and automatable) steps:

• Each subprocess in T is mapped directly to its structural equivalent in BTPA, i.e., the constructors in
Fig. 3 are mapped to those in Fig. 4, with the exception of selections which are explained below.

• Each node in Fig. 2 is translated to its BTPA equivalent, as given in Fig. 6 and discussed below.

• The label mapping ρ is built (see Appendix B).

• The alphabet function α is built.

3.2.1 Selection translations

Single and multiple selections are translated according to the following definitions.

Definition 1 (Selection)

C ? s ?; T =̂ �(C ??? s ???; T )

Definition 2 (Multiple selection)

(C ? s1 ?; T1) [] · · · [] (Cn ? sn ?; Tn) =̂ �((C ??? s1 ???; T1) [] · · · [] (Cn ??? sn ???; Tn))

Note that a multiple selection is not just a nondeterministic composition of single selection statements: the
else-skip operator must be lifted outside the scope of the nondeterministic choice.
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3.2.2 Node translation

A BTPA equivalent for each of the nodes in Fig. 2 is given in Fig. 6.

Node Behavior Tree BTPA implementation
Output Event C < e(~v) > send e(~v)
Input Event C > e(~x ) < recv e(~x )
Synchronisation N@m N syncm
Guard C ??? s ??? [D.σ(C ) = s,D′ = D]
State realisation C[s] [true,D′ = D ⊕ {C 7→ s}]
Goto N = spawn ` where the root of ρ(`) is node N
Kill N−− kill ` where the root of ρ(`) is node N
Revert Nˆ revert ` where the root of ρ(`) is node N

Figure 6: Defined nodes for BT translation

Output/input event nodes are translated directly to send and receive message nodes. We have omitted the
name of component C from the BTPA message, though this can easily be added (calling the message, e.g.,
C .e) if important. The translation for synchronisation nodes is straightforward. Guards and state realisations
are translated to specification commands. A guard C ??? s ??? blocks until the component C is mapped to
value s in the current state (D.σ). It leaves the context unchanged. A state realisation C[s] does not block
(its guard is true), but it updates the current context so that the state maps C to the value s and leaves
the active processes unchanged (we have lifted function override (⊕) to operator on contexts: the override is
applied to the state element of the context pair).

Goto, kill and revert nodes are translated into specification commands as given in Fig. 7.

Node Definition
spawn ` [true,D′ = ρ(`)·D]
kill ` [true,D′ = filterk(`,D)]
revert ` [true,D′ = ρ(`)·filterk(`,D)]

Figure 7: Label-based node definitions

Each is nonblocking (the guard is true), and each leaves the current state unchanged. However the set of
active threads is modified in some way. A spawn ` adds a copy of the process labelled ` to the active set.
Conversely, a kill ` removes all processes that are children of the process rooted at `. A revert ` is a combination
of both a spawn and a kill. The function filterk is defined below.

Definition 3 (filterk) For label ` and context D,

filterk(`,D) =̂ ([[T :D.π | T � ρ(`)]],D.σ)

That is, filterk(`,D) is the context formed by removing all processes T in D.π that are subprocesses of the
process labelled `. The subprocess ordering � is the canonical subterm ordering.

We have now described a process algebra which includes methods for three types of communication, and is
based on a bag of processes operating in parallel (hence, we do not give an operator for parallel composition).
We can translate all of the constructs of the Behavior Tree notation given in Sect. 2 into equivalents in BTPA,
at the same time constructing the static execution environment which includes labelling and synchronisation
information. In the next section we provide an operational semantics for BTPA, and hence for Behavior Trees.
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4 Semantics

In this section we provide an operational semantics for BTPA.

4.1 Transition relations

The behaviour of a system is defined in terms of several different step relations, given in Fig. 8.

Reln Type Written Description
=⇒ Ctx ↔ Ctx D =⇒ D′ Top-level behaviour; a single atomic step
−→ (Action × Proc × Ctx ) ↔ Ctx 〈T ,D〉 a−→ D′ The effect of a process T on the context D
→→ (Action × bag Proc × Ctx ) ↔ Ctx 〈S ,D〉 a→→ D′ The effect of bag S on the context D

Figure 8: Transition relations

Consider a context D0, formed from the pair ([[T ]], σ0), ie, there is exactly one active thread, the tree T , and
the initial values of the components are given in σ0. The execution of this system proceeds in a series of
steps in the transition relation =⇒, i.e., D0 =⇒ D1 =⇒ · · · =⇒ Dn =⇒ · · · , where each step is atomic. If no
transition is possible from Di , and there are still active threads (i.e., Di .π 6= [[ ]]), then we have deadlock; if
there are no active threads, then the tree has finished. As long as there are active threads that aren’t blocked,
the execution can continue, possibly forever.

Steps in =⇒ are constructed by the transition a−→, which gives the effect of a single process on a context.
For instance, the transition 〈T ,D〉 a−→ D′ states that executing process T transforms context D into D′. The
action name a indicates the type of transition; it may be a message name (with a list of parameters) if the
transition is describing a communication, or the distinguished label δ if no communication is described, i.e.,
the step is state-based. In the rules, we decorate transitions with a if it is defined for either communication
or state-based actions, with m(~v) if it is defined for messages only, and with δ if it is defined for state-based
actions only, which we call δ-transitions.

When multiple processes combine their individual steps to form a single atomic step of the whole system,
such as when synchronisation occurs, the behaviour is described in terms of the transition relation a→→ . For
instance, the transition 〈S ,D〉 a→→ D′ states that allowing each process in bag S to execute a single atomic
step transforms context D into D′.

In the following sections we provide axioms for the different transition relations. The relations =⇒ and →→
are defined in terms of a−→, which is the main relation, and each construct of the language is given a transition
in a−→.

4.2 Global steps

Formally, an observable step of a BTPA system is made in =⇒ by nondeterministically selecting one of the
active processes and making a δ-transition. This is given by the following rule.

Axiom 1 (Global step)

〈T ,D〉 δ−→ D′

T ·D =⇒ D′

We represent the allowable transitions as rules consisting of conditions above a horizontal line and an allowable
transition (if the conditions hold) below the line. If there are no conditions then the line is omitted. In this
case, a context which contains process T transitions to context D′ if T transforms D into D′ via the relation

δ−→.
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4.3 Combined transitions

Before describing the meaning of a transition in a→→ , we must define enabledness: a process T is enabled (not
blocked) with respect to some context D and action a if T can transition in a−→ from D. This is written
enableda(T ,D), and is defined formally below. The bag of enabled processes in a context D for action a is
given by enableda(D).

enableda(T ,D) =̂ 〈T ,D〉 ∈ (dom a−→)
enableda(D) =̂ [[T :D.π | enableda(T ,D−T )]]

We now define transitions for a→→ . At the top level, a step in a→→ occurs by letting each process in S take a
single atomic step. This is achieved by selecting an enabled process T from S , taking a step in a−→ with T ,
then removing T from the bag and “recursively” taking another step in a→→ (Axiom 2). The recursion stops
when all processes in S have been given a chance to execute a single atomic stop, i.e., when S is empty, or
when no members of S are enabled in the current context (Axiom 3).

Axiom 2 (Recurse a→→ )

(〈T ,D〉 a−→ D′) ∧ (〈S ,D′〉 a→→ D′′)
〈T ·S ,T ·D〉 a→→ D′′

Axiom 3 (Finish a→→ )

S u enableda(D) = [[ ]]
〈S ,D〉 a→→ D

Note that in a transition 〈S ,D〉→→ D′, the members of S are typically also members of D.π, in contrast to
a transition 〈T ,D〉 −→ D′ (applied via Axiom 1) where T is not in D.π. We do this so that members of
S can “see” other members of S , therefore allowing behaviour such as one member of S disabling or even
killing another. It is to allow for this possibility that Axiom 3 does not just check whether S is empty, since
deadlock could result if there was a process in S which was not enabled in the current context. The way a→→
is employed in our rules, at the beginning of a step in a→→ all elements in S will be enabled members of D.

4.4 Transitions for single processes

The rules for the operators defined in Fig. 4 are given in Fig. 9.

Sequential composition. The context after a sequential composition N ; TT is the context after observing
the effect of node N on the initial context, and putting all of the processes in TT into the new context
(Axiom 4).

Atomic composition. The general rule for atomic composition (Axiom 5) is defined similarly to Axiom 4,
except that each process in TT is given a chance to take an atomic δ-transition (via the δ→→ relation) imme-
diately after N is executed, without allowing interleaving from other processes. If not all processes in TT are
enabled, the atomic composition can not transition. We thus preclude partial execution of atomic blocks –
either the root node N and all the threads in TT may transition, or no step is taken.

We can straightforwardly specialise both Axiom 4 and Axiom 5 for the common case where the bag TT is
the singleton [[T ]]. This gives a much simpler rule for atomic composition.

Rule 9 (Sequential composition (singleton))

〈N ,D〉 a−→ D′

〈(N ; T ),D〉 a−→ T ·D′

Rule 10 (Atomic composition (singleton))

(〈N ,D〉 a−→ D′) ∧ (〈T ,D′〉 δ−→ D′′)
〈(N ;;T ),D〉 a−→ D′′
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Axiom 4 (Sequential composition)

〈N ,D〉 a−→ D′

〈(N ; TT ),D〉 a−→ TT ] D′

Axiom 5 (Atomic composition)

〈N ,D〉 a−→ D′ ∧
TT ⊆ enabledδ(TT ] D′) ∧ 〈TT ,D′〉 δ→→ D′′

〈(N ;;TT ),D〉 a−→ D′′

Axiom 6 (Nondeterministic composition)

〈T1,D〉
a−→ D′

〈(T1 [] T2),D〉
a−→ D′

〈T2,D〉
a−→ D′

〈(T1 [] T2),D〉
a−→ D′

Axiom 7 (Else-skip (i))

〈T ,D〉 a−→ D′

〈(�T ),D〉 a−→ D′

Axiom 8 (Else-skip (ii))

¬ enableda(T ,D)
〈(�T ),D〉 a−→ D

Figure 9: Axioms for process constructors

Nondeterministic composition. A nondeterministic composition (Axiom 6) proceeds if one of the pro-
cesses can take a step. If both processes are enabled, either may be selected (rendering the other one obsolete);
if neither are enabled, the composition blocks. The rule can be generalised straightforwardly to any finite
number of processes.

Axiom 11 (Nondeterministic composition (generalised))

〈Tj ,D〉
a−→ D′ ∧ j < n

〈([]i<n Ti),D〉
a−→ D′

Our nondeterministic choice operator corresponds to CSP’s (angelic) choice operator. It is straightforward to
also define rules for a demonic version, e.g., the rule for selecting the left side would be 〈T1uT2,D〉

a−→ T1·D.

Else-skip. A tree �T may transition normally if T is enabled (Axiom 7), but if T is not able to transition,
it may be terminated (Axiom 8). We use this operator to define the Behavior Tree selection operator. The
appropriate rules are given in the next section, after the definition of the guard node.

4.5 Transitions for nodes

In this section we give rules for the nodes in Fig. 5.

4.5.1 Specification command

Axiom 12 states that a specification command [P(D),Q(D,D′)] can transition when its guard is enabled in
the current context. It updates the state so that the relation Q is maintained.
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Axiom 12 (Specification command)

P(D) ∧ Q(D,D′)
〈[P ,Q ],D〉 δ−→ D′

Thus, assuming that the predicate P holds in the current context, and the effect of Q is to update D to D′,
the context after executing the specification command is D′. Note that this is a δ-transition, since it is not
a communication node. We can use Axiom 12 to give a meaning to the Behavior Tree nodes in Fig. 2, using
the definitions in Figs. 6 and 7.

Rule 13 (Guard)

D.σ(C ) = s
〈(C ??? s ???),D〉 δ−→ D

Rule 14 (State realisation)

〈(C[s]),D〉 δ−→ D ⊕ {C 7→ s}

Rule 15 (Spawn)

〈(spawn `),D〉 δ−→ ρ(`)·D

Rule 16 (Kill)

〈(kill `),D〉 δ−→ filterk(`,D)

Rule 17 (Reversion)

〈(revert `),D〉 δ−→ ρ(`)·filterk(`,D)

We can define transitions for selections (bottom of Fig. 4) using the else-skip operator.

Rule 18 (Single selection)

D.σ(C ) = s
〈(C ? s ?; T ),D〉 δ−→ T ·D

Proof. From Definition 1, Axiom 7, Axiom 9
and Rule 13. 2

Rule 19 (Single selection fail)

D.σ(C ) 6= s
〈(C ? s ?; T ),D〉 δ−→ D

Proof. From Definition 1 and Axiom 8. 2

As with nondeterminism, the rules generalise straightforwardly to any finite number of processes.

Example. We can derive the following rule which summarises the effect a state realisation when it is the
root node of a sequential composition. Consider the process (C[s]; T ) operating in parallel with the context
formed from the bag of threads π, in state σ. After executing C[s] the bag of active processes will be π with
T , and σ will be updated to map C to s.

Rule 20 (State realisation in sequential composition)

(C[s]; T )·(π, σ) =⇒ (T ·π, σ ⊕ {C 7→ s})

Proof.

(C[s]; T )·(π, σ) =⇒ (T ·π, σ ⊕ {C 7→ s})
⇐ Axiom 1
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Axiom 21 (Send message)

〈R,D〉 δ−→ D′ ∧
〈enabledm(~v)(D′),D′〉m(~v)−→ D′′

〈(R sendm(~v)),D〉 δ−→ D′′

Axiom 22 (Receive message)

〈R,D〉 δ−→ D′ ∧
#~x = #~v

〈(R recv m(~x )),D〉 m(~v)−→ D′ ⊕ (~x 7→ ~v)

Axiom 23 (Synchronise (participate))

〈R,D〉 δ−→ D′

〈(R syncm),D〉 m−→ D′

Axiom 24 (Synchronise (initiate))

enabledm(D) = {T :C .π | m ∈ α(T )} ∧
〈(R sendm),D〉 δ−→ D′

〈(R syncm),D〉 δ−→ D′

Figure 10: Axioms for communication nodes

〈(C[s]; T ), (π, σ)〉 δ−→ (T ·π, σ ⊕ {C 7→ s})
⇐ Axiom 9
〈(C[s]), (π, σ)〉 δ−→ (π, σ ⊕ {C 7→ s})

⇐ Rule 14

2

This rule models the basic execution of a Behavior Tree system: sequential processes operating in parallel
which modify the state.

4.5.2 Sending a message

A message m is sent via a R sendm(~v) node. It allows each process that is waiting to receive m with the right

number of parameters (i.e., that can transition in
m(~v)−→) to make an atomic step. Axiom 21 in Fig. 10 first

executes the state-based step associated with specification command R (transitioning to intermediate context
D′), then triggers each process waiting for message m to take a step, resulting in final context D′′. A simple
case of this rule is where no parameters are associated with the message, and where no state-based behaviour
is required.

Rule 25 (Send message)

〈enabledm(D),D〉 m→→ D′

〈(sendm),D〉 δ−→ D′

In this case, each process which is enabled to transition in m is given a chance to take a step.

4.5.3 Receive message

The basic process that can participate in transition relation
m(~v)−→ is a R recv m(~v) node. Such a node is

triggered by the execution of the corresponding sendm(~v) node – see Axiom 22 in Fig. 10. Given that the
process is waiting for the correct number of parameters to message name m, the rule executes the state-based
step associated with specification command R (transitioning to intermediate context D′), then updates the
resulting context so that the variables listed in ~x are mapped to the corresponding values in ~v . The notation
~x 7→ ~v is defined below.

~x 7→ ~v = {i : 0..#~x − 1 • (~x (i), ~v(i))}

As with sending a message, a much simpler rule can be derived when no parameters or specification command
is associated with the reception of a message.
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Rule 26 (Receive message)

〈(recv m),D〉 m−→ D

Example communication. Consider a context containing a process which initially sends message m then
behaves as T1, and a process which waits for m then behaves as T2. The final context is the original context
with T1 and T2 in place of the sender and receiver. The proof obligation is that no other process is listening
for m, otherwise those processes would also be triggered and modify the final context.

Rule 27 (Send to one)

enabledm(D) = [[ ]]
(sendm; T1)·(recv m; T2)·D =⇒ T1·T2·D

Proof. First we note the following property, which follows from the antecedent and that (recv m; T2) is
enabled (not blocked) under transition m−→ (see Rule 26).

enabledm((recv m; T2)·D) = [[(recv m; T2)]] (1)

We now complete the derivation.

(sendm; T1)·(recv m; T2)·D =⇒ T1·T2·D
⇐ Axiom 1
〈(sendm; T1), (recv m; T2)·D〉

δ−→ T1·T2·D
⇐ Axiom 9
〈(sendm), (recv m; T2)·D〉

δ−→ T2·D
⇐ Rule 25, and (1)
〈[[recv m; T2]], (recv m; T2)·D〉

m→→ T2·D
⇐ Axiom 2
〈(recv m; T2),D〉

m−→ D′ ∧ 〈[[ ]],D′〉 m→→ T2·D
⇐ Simplify from Axiom 3
〈(recv m; T2),D〉

m−→ T2·D
⇐ Axiom 4
〈(recv m),D〉 m−→ D

⇐ Rule 26

2

4.5.4 Synchronisation

The intuition behind synchronisation is that when all threads that wish to synchronise on m are enabled, they
are all given a chance to take an atomic step (where that step will typically be just to pass the synchronisation
node). We model this using the message passing system introduced in the previous section, in conjunction
with the synchronisation alphabet. Associating message passing with synchronisation is discussed at the end
of this section.

In Axiom 23 in Fig. 10, we firstly allow R syncm nodes to participate in m−→. Similarly to receive nodes
(Axiom 22) we execute the specification command R in conjunction with the transition for message m. The
simple case where there is no associated specification command is given below.

Rule 28 (Synchronise)

〈(syncm),D〉 m−→ D
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In addition to passively participating in a synchronisation, a sync node may also initiate a synchronisation
if all listening threads are enabled (Axiom 24). A synchronisation is modelled by one of the nodes sending
the message m to all of its fellow synchronisation nodes, as long as the processes currently enabled for m
(enabledm(D)) are exactly those that participate in m ({T :C .π | m ∈ α(T )}); otherwise all synchronising
nodes are blocked. Axiom 23 and Axiom 24 are intentionally similar to the axioms for receiving and sending
messages; one of the nodes acts as the initiator of the synchronisation message (Axiom 24), and the others
respond (Axiom 23). We can abstract away from this model by using the following transition in =⇒, which
allows synchronisation to “spontaneously” occur, once the conditions have been met.

Rule 29 (Synchronisation (=⇒)) Assuming D contains at least one thread of the form (R syncm; T ),

enabledm(D) = {T :C .π | m ∈ α(T )} ∧
〈(sendm),D〉 δ−→ D′

D =⇒ D′

Proof. From Axiom 24 (and Rule 9). 2

Example. Consider the case where exactly two process are waiting to synchronise on m.

Rule 30 (Synchronise twins)

m 6∈ α(D)
(syncm; T1)·(syncm; T2)·D =⇒ T1·T2·D

Proof. From Rule 29, Axiom 2, Axiom 3, and from the antecedent:

enabledm((syncm; T1)·(syncm; T2)·D) = [[(syncm; T1), (syncm; T2)]]

2

Similarly to Rule 27, after the synchronisation the processes have passed their synchronisation point and T1

and T2 are now active.

4.6 Discussion

Below we briefly discuss some reasons for, and issues rising from, modelling behaviour tree systems using the
semantics given here.

No parallel operator. We do not have an explicit parallel composition operator. In effect the bag of
active process is a more primitive method for expressing parallelism; we could alternatively consider the bag
as a generalised parallel composition. Axiom 1 corresponds to the rule for parallel composition in other
process algebras. The difference is that we always have parallel composition at the top level of the system.
This allows us to more easily express process manipulation behaviour, such as killing threads and broadcast
messages, than would be allowed if each process could not “see” all other processes. In CSP-like algebras,
killing of other threads is handled less generally by mechanisms such as interrupts. However, our approach is
restrictive in other ways since we do not allow parallelism at lower levels of nesting, e.g., in this paper we do
not allow one choice in a nondeterministic composition to be a bag of processes operating in parallel (though
the generalisation is straightforward).

Atomicity and parallelism. Axiom 5 for atomic composition is not intuitive, mainly stemming from
the unintuitive nature of combining atomicity with concurrency. We have taken the approach that a bag
of threads can take an “atomic” step by allowing each member of that bag to individually take an atomic
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step (in some nondeterministically chosen order). While this does not appear useful in practice since it is
difficult to implement, interestingly, the concept is useful when describing the behaviour of message passing
and synchronisation. However, when atomic composition is used with a singleton bag of processes on the
right-hand side, the rule specialises to our usual notion of atomicity (Rule 10).

Buffered communication. It is common for communication to occur on a buffer, which can vary in length
from one to being unbounded, and vary according to whether it is blocking or nonblocking. Communication
along a buffer is a case of shared variable communication, where the buffer is treated as a member of the state.
It is easy to define a set of commands that manipulate the buffer in the desired fashion using specification
commands.

Synchronised message passing. In CSP, channels model a flow of information between synchronised
processes (where the sender is blocked until there is a receiver). We may straightforwardly extend the definition
of send to model the sending of a message which is blocked until all receivers are ready (and the extension
to “at least one” receiver is ready is similarly straightforward). Following the style of CSP, we decorate a
blocking send message node along a channel with ‘!’. This node will only send the message when all receivers
(which may be optionally decorated with ‘?’) are ready.

Axiom 31 (Synchronised send)

enabledm(D) = {T :C .π | m ∈ α(T )} ∧
〈(R sendm(~v)),D〉 δ−→ D′

〈(R send!m(~v)),D〉 δ−→ D′

Thus a blocking send node (a CSP channel) behaves as a non blocking send node, with the additional
constraint that all receivers are enabled (the message name must be added to the synchronisation alphabets
of the receiving processes).

4.7 Simulation

The process algebra BTPA and its operational semantics have been implemented as a simulation tool in
the Mercury logic programming language [SHC95, Mer]. The simulator, BTsim, takes as input a Behavior
Tree using the constructs in Sect. 2, the initial values for the components in the system, and a list of safety
properties for it to check. It converts the Behavior Tree into BTPA, automatically labelling the tree and
determining the alphabet of each process. For a terminating system, or a non-terminating system that only
interacts finitely often with the environment, BTsim can be used to nondeterministically generate a single run
of the BT system, or can generate all possible runs (subject to hardware constraints), and can check if the
safety properties are maintained after each atomic step. The translation of the operational rules into Mercury
was quite straightforward, and also fed back into the development of the semantics.

Though it is possible to check some simple safety properties and produce counter examples if they are violated,
it is not intended to develop the simulator into a fully functional model checking tool. In other work, a model
checking tool has been developed for Behavior Trees using SAL [GLWY05]. It can check invariants as well as
LTL formulas.

5 Conclusions

In this paper we have given a process algebra and operational semantics that can be used to model the
Behavior Tree notation. The semantics handles synchronisation, message passing and testing and updating
the state. The rules and constructs are intended to form a small but powerful set of primitives on which
more complex behaviour can be built. The subset of the semantics corresponding to Behavior Trees has been
implemented as a simulation tool.
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The development of a new process algebra, rather than using an existing one, was motivated by the Behavior
Tree concepts of process killing, atomic composition, and non-blocked message passing. Some of the oper-
ational rules appear less elegant than in other formal systems, particularly the rule for sending a message,
but this appears to be a by-product of having a language which combines state with atomicity and synchro-
nisation. Despite this, the rules are relatively compact, and were easily implemented in the simulation tool
(Sect. 4.7).

For brevity we have assumed simple underlying definitions. In particular, we have not allowed components
to have attributes, though this is common in Behavior Tree models. The extensions required to allow this are
straightforward and hence have been omitted from this document. We could also extend the underlying
type Val , partitioning it into subtypes and associating a type for each component. This extension has
been successfully applied in many other systems, and hence, to keep the presentation uncluttered, we have
maintained a simple untyped model.

A Multiset operators

The multiset (or bag) operators are defined below, treating bags with elements of type T as partial functions
T 7→ N1.

b# (λ e:T • 0)⊕ b
b1 ] b2 (λ e:T • b1#e + b2#e) B N1

b1 u b2 (λ e:T • min(b1#e, b2#e)) B N1

b1−b2 (λ e:T • b1#e − b2#e) B N1

e·b [[e]] ] b
b−e b−[[e]]
[[e: b | P(e)]] {e: dom b | P(e)}C b

B Labelling processes

In Sect. 3.1 a function ρ:BTLabel 7→ Proc was introduced as part of the execution environment, which maps
labels, as used by spawn, kill and revert nodes, to processes. The mapping is used to filter out processes in
Definition 3, filterk . However, from the point of view of simulation, the subterm ordering is not an efficient
manner of defining the subprocess ordering �. In this section we introduce a system of defining the mapping
ρ such that the subprocess ordering may be retrieved by examining the labels of the subprocesses. For these
purposes we will define the type BTLabel as seq N.

For a given process T , let the set of subprocesses (subterms) of T be given by subprocs(T ). Then we define
the set of order-preserving mappings on T as

labelT =̂ {f : subprocs(T ) → BTLabel | (∀T1,T2: dom f • T1 � T2 ⇔ f (T2) prefix f (T1))}

That is, each subtree of T contains T ’s label as a prefix. Intuitively, an element f ∈ labelT can be constructed
by recursively descending depth-first from the root node of T , with each subprocess extending the label of its
parent. Hence, the full tree T is mapped to, say, 〈0〉, while the leaf nodes will be of length n, depending on
how deeply they occur within T .

The set of inverses of labelT is defined by

ρT =̂ {ρ:BTLabel 7� subprocs(T ) | (∀ `1, `2: dom ρ • ρ(`2) � ρ(`1) ⇔ `1 prefix `2)}

An element of ρT suffices for ρ in the execution environment, while an element of labelT effectively augments
each process in T with a label.

We define a function for constructing ρ below.

labelTree: (Proc × BTlabel) → (BTlabel → Proc)
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Where ` is a label, `0 is the label ` a 〈0〉. Similarly for `i , where i is a number.

labelTree(N ; T , `) = labelTree(T , `0)⊕ {` 7→ N ; T}
labelTree(N ;; T , `) = labelTree(T , `0)⊕ {` 7→ N ;; T}
labelTree([]i<nTi , `) = (

⋃
i<n labelTree(Ti , `i))⊕ {` 7→ []i<nTi}

labelTree(�T , `) = labelTree(T , `0))⊕ {` 7→ �T}

As an example, given a process

T =̂ a; ((b; [[c, d , g ]]) [] (e; f ))

we construct the following labelling scheme for each of the subprocesses of T . We choose the label of T to be
the singleton sequence “0”4.

0 7→ a; ((b; [[c, d , g ]]) [] (e; f ))
00 7→ (b; [[c, d , g ]]) [] (e; f )
000 7→ (b; [[c, d , g ]])
0000 7→ c
0001 7→ d
0002 7→ g
001 7→ (e; f )
0010 7→ f

It is easy to check that each subprocess’s label contains T ’s label (0) as a prefix. Similarly, we can see that d
(label 0001) is a subprocess of (b; [[c, d , g ]]) (label 000). There is no relationship between, for instance, d and
f , since neither is a prefix of the other (though we can determine that their closest common ancestor must be
the process labelled 00).

C Example Behavior Trees

In this section we present several versions of the microwave example presented in [Win04, Figure 6]. There
are some slight differences because the notation and approach have been developed since publication.

C.1 Microwave Behavior Tree in box notation

Oven
[Open] → User

> Close <
→ Door

[Closed ] → Button
[Enabled ] → Light

[Off ] → Oven
[Idle]

↗
↘

User
> Open <

→ Door
[Open] → Light

[On] → Button
[Disabled ] → Oven

[Open]
ˆ

[]
User

> Push <
→ Button

[Pushed ] → Light
[On] → Powertube

[Energized ] →
Oven

[Cooking ]
↗
↘→

User
> Push <

→ Button
[Pushed ] → Oven

[ExtraMin] →
Oven

[Cooking ]
ˆ

[]
User

> Open <
→ Door

[Open] → Button
[Disabled ] → Powertube

[Off ] → Oven
[CookStop] →

Oven
[Open]

ˆ

[]
Oven

> Timer <
→ Light

[Off ] → Button
[Enabled ] → Powertube

[Off ] → Beeper
[Sounded ] →

Oven
[CookFinish]→

Oven
[Idle]

ˆ

4We will omit the usual sequence bracketing notation and instead write the list of numbers as a string; this is acceptable in
the context of this example because we do not require two-digit numbers, i.e., no process has more than ten direct subprocesses.
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C.2 Microwave Behavior Tree translated to BTPA

In this section we show how the microwave example is expressed in BTPA. Firstly we construct the label
mapping ρ using function labelTree defined in Appendix B. The main tree, rooted at Oven[Open], is labelled
0. Its subtree is labelled 00, rooted at User > Close <. We label the subsequent nodes similarly until we
reach the first branch point. The subtrees rooted at User > Open < and User > Push < are labelled 0000001
and 0000000, respectively. In actuality, the only interesting labels in ρ are the reversion points (since we do
not have any spawns or kills). We write 0i to indicate a label formed from i 0s. We have

ρ(0) = Oven[Open]; ...
ρ(00) = User > Close <; ...
ρ(06) = Oven[Idle]; ...
ρ(011) = Oven[Cooking ]; ...

Now we translate the tree itself. There are no selections, spawns, kills or synchronisations, so we need only
worry about the reversions; the rest of the tree remains the same. We have added labels to the three destination
reversion nodes, and translated the reversion (source) nodes to use the revert keyword.

:̀
0

Oven
[Open] → User

> Close <
→ Door

[Closed ] → Button
[Enabled ] → Light

[Off ] → :̀
06

Oven
[Idle]

↗
↘

User
> Open <

→ Door
[Open] → Light

[On] → Button
[Disabled ] → revert 0

[]
User

> Push <
→ Button

[Pushed ] → Light
[On] → Powertube

[Energized ] →
:̀

011
Oven

[Cooking ]
↗
↘→

User
> Push <

→ Button
[Pushed ] → Oven

[ExtraMin] → revert 011

[]
User

> Open <
→ Door

[Open] → Button
[Disabled ] →

Powertube
[Off ] → Oven

[CookStop] → revert 0

[]
Oven

> Timer <
→ Light

[Off ] → Button
[Enabled ] → Powertube

[Off ] → Beeper
[Sounded ] →

Oven
[CookFinish]→ revert 06
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